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The optimal growth rate, total transmission, and duration of

infection in the absence of heterogeneity

In unvaccinated and anti-growth vaccinated hosts, we assume no anti-transmission

immune response X2. Then by dividing eq. (2) by eq. (3) and integrating we obtain

(for more detail see Ganusov et al. (2002)):

ln

(
P (t) + k

P0 + k

)
=

r

s
ln

(
X1(t)

X10

)
− h1

s
(X1(t)−X10). (14)

Noting that the maximal transmission occurs when P (t) approaches the lethal

density D, we set dP (t)/dt |t=tpeak
= 0 and obtain X1(tpeak) = r/h1. Since the

maximal transmission occurs at r = r∗, we obtain eq. (6) using eq. (14) with

t = tpeak at the limits P0 � k, D � k and h1X10/s � 1 (Antia et al. 1994). For

a linear transmissibility ζ[P (t)], the total transmission of pathogens not killing the

host (with r ≤ r∗) is

l(r) = c
∫ ∞

0
P (t)dt = c

∫ ∞

0

P (t) + k

sX1(t)
Ẋ1dt ≈ kc

s

(
s

h1X10

)r/s

Γ(r/s), (15)

where we assumed a large expansion of immune cells (h1X1(∞)/s � 1 and Γ(x) is

the Euler gamma function) and also used the relationship between P (t) and X1(t)

given in eq. (14).
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When r � r∗, we assume that the pathogen population grows exponentially

until it kills the host; then the total transmission is

l(r) = c
D

r
. (16)

We calculate the duration of acute infection for the cases when r < r∗ and

r > r∗ separately (r∗ is given in eq. (6)). If r > r∗ the pathogen kills the host;

approximating that the pathogen population grows exponentially until it kills the

host, the duration of acute infection ∆(r) will be:

∆(r) ≈ ln(D/P0)

r
. (17)

When r < r∗ the pathogen is cleared by the immune response; the duration of

acute infection is found by integrating eq. (3):

∆(r) =
∫ X1(∞)

X10

dx

sx

(
1− k

P0 + k

(
X10

x

)r/s

eh1(x−X10)/s

)−1

, (18)

where the maximum density of immune cells X1(∞) is approximately a solution

of the equation: r ln(X1(∞)/X10) = h1(X1(∞) − X10) obtained from eq. (14) by

setting P (∞) = 0.

In anti-transmission vaccinated hosts, assuming that the anti-transmission im-

mune response expands moderately (i.e, h2X2(∞) � 1), we obtain similar expres-

sions for r∗, l(r) at r � r∗, and ∆(r). However, the total transmission l(r) at r ≤ r∗

is changed:

l(r) = c
∫ ∞

0

P (t)

1 + h2X2(t)
dt ≈ kc

s

(
s

h1X10

)r/s ∫ ∞

0

xr/s−1e−x

1 + xh2X20/(sh1X10)
dx =

=
kc

s

(
s2

h2X20

)r/s

e
sh1X10
h2X20 Γ

(
r

s

)
Γ

(
1− r

s
,
sh1X10

h2X20

)
, (19)

where Γ(n, z) is an incomplete gamma function. We used the following relationship

between the two responses: X2(t)/X1(t) = X20/X10, obtained by integrating eq.(3)

and (10), and other approximations as before. We have verified that the approx-

imation given in eq. (19) is valid for the description of the total transmission of
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pathogens in vaccinated hosts for parameters used in the main text. To plot the

total transmission of pathogens with different growth rates in the absence of hetero-

geneity we use eqn. (4) or (11) with P (t) and X2(t) found by direct integration of

eqns. (2), (3), and (10).

The average total transmission and virulence of pathogens in

a heterogeneous population

The average total transmission of pathogens in a heterogeneous population given by

eq. (8) can be calculated using the above approximations for l(r):

L(r) ≈
∫ r∗

0
l(r′)f(r′, r)dr′ + c

∫ ∞

r∗

D

r′
f(r′, r) dr′, (20)

with l(r′) given in eq. (19) and r∗ calculated in accord with eqn. (6) at a known

precursor number X10. This approximation was used to calculate the average total

transmission and to generate predictions shown in the main text.

The case mortality is the probability of host’s death following the infection. In

a host population with heterogeneity defined by f(r′, r), an infection will result in

host’s death if the current growth rate r′ is greater than r∗:

m(r′) =

 1, if r′ > r∗,

0, otherwise.
(21)

Integrating m(r′) over all growth rates, we obtain the average case mortality

M(r) given in eq. (9). In Figure 9 we show an example of the average total transmis-

sion L(r) and virulence of pathogens M(r) with different growth rates in vaccinated

and unvaccinated hosts.

Epidemiological trade-offs

We have shown previously that using models of the within-host dynamics of pathogens

one can estimate the parameters determining the rate of epidemiological spread of

the pathogen-induced disease such as transmissibility β, host recovery rate ν, host
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Figure 9: The average total transmission L(r) (panels A and B) and virulence (panels C
and D) of pathogens with different growth rates in unvaccinated (solid lines), anti-growth
(long-dashed lines, left panels) and anti-transmission (short-dashed lines, right panels)
vaccinated hosts in the presence of heterogeneity. The average total transmissions are
normalized to the maximum total transmission in unvaccinated hosts in the absence of
heterogeneity. Dots denote ES pathogen characteristics. Parameters are the same as in
the main text and σ = 0.1.
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Figure 10: Changes in the total transmission of pathogens with different growth rates
occurring with the increasing fraction of anti-growth vaccinated hosts p at high vaccine
efficacy (i.e., when precursor number of anti-growth immune response is increased 10
fold after vaccination). Thin continuous lines denote the total transmission of pathogens
from unvaccinated hosts, (1 − p)Lu(r). Dashed lines denotes the total transmission of
pathogens from anti-growth vaccinated hosts, pLv(r). Bold continuous lines denote the
total transmission of pathogens from the whole population L(r) = pLv(r) + (1− p)Lu(r).
The dot denotes the ES total transmission. All total transmissions are normalized to
the ES pathogen transmission in unvaccinated hosts in the absence of heterogeneity. The
fraction of vaccinated hosts p is marked. Parameters are the same as in the main text.
Note that there are two maxima in the total transmission, and at some intermediate
coverage 0.1 < p < 0.5 the pathogen switches from one maximum to another.
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mortality rate α and the basic reproductive number R0 (Ganusov et al. 2002). The

epidemiological parameters can be estimated as follows.

First, the basic reproductive number, R0, is proportional to the average number

of pathogens transmitted from an infected host over the course of acute infection, i.e.

R0(r) = uL(r), where u is a constant. Second, the transmission rate of a pathogen

with the growth rate r, β̂(r), equals the total transmission of the pathogen over the

course of acute infection, l(r), divided by the duration of acute infection, ∆(r):

β̂(r) = u
l(r)

∆(r)
. (22)

The average transmissibility of the pathogen in a heterogeneous population, β(r),

with heterogeneity described by f(r′, r) is:

β(r) =
∫ ∞

0
β̂(r′)f(r′, r) dr′ = u

∫ ∞

0

l(r′)

∆(r′)
f(r′, r) dr′. (23)

The average host mortality rate α(r) and host recovery rate ν(r) are calculated

in a similar way:

α(r) =
∫ ∞

0

m(r′)

∆(r′)
f(r′, r) dr′, (24)

ν(r) =
∫ ∞

0

1−m(r′)

∆(r′)
f(r′, r) dr′. (25)

Now, by estimating parameters β, ν, α and R0 for a pathogen with a given

growth rate r, one can infer the correlations (trade-offs) between these pathogen

characteristics.

Explicit modeling of two stages of the pathogen’s life cycle

In the main text we have focused on the analysis of a simple model that involves

one pathogen population and two immune response, directed against pathogen’s

growth and transmission. Here we shortly describe a more general model, that

explicitly describes the dynamics of two stages in the pathogen life-cycle: replicating

P1 and terminally-differentiated transmitting P2 (Figure 11). We assume that the
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infection is initiated by the replicating stage, starting from a small inoculum P10.

We also assume that the conversion rate λ from the replicating to transmitting

stage is constant during the infection and cannot evolve (for a more general case,

see (Koella and Antia 1996)). Two pathogen populations are controlled by different

immune responses, X1 and X2, expanding for X10 and X20 precursors, respectively,

and killing the pathogens at the per capita rates h1 and h2, respectively.

X1
Immune response

X2
Immune response

P1
Pathogen

P2
Pathogen

+
replication transmission

− −

Figure 11: The cartoon of interactions between the pathogen and host’s immune re-
sponses when a separate transmission stage is modeled. We assume that pathogen popula-
tion P1 replicates exponentially and with a probability λ differentiates into non-replicating
transmission stage P2. See Figure 2 and eqn. (26)–(29) for other detail.

Then the dynamics of pathogens and immune responses are given by the equa-

tions:

dP1

dt
= r(1− 2λ)P1 − h1X1P1, (26)

dP2

dt
= rλP1 − h2X2P2, (27)

dX1

dt
=

sX1P1

k1 + P1

, (28)

dX2

dt
=

sX2P2

k2 + P2

, (29)

with other parameters similar to those in the simple model given in eqn. (2)–(3).

Since the conversion probability is small, λ � 1, (Koella and Antia 1996; Taylor
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and Read 1997), we assume that the pathogen kills the host when the replicating

stage P1 reaches the lethal density D and that there is no transmission from a dead

host. The rate of pathogen transmission from infected hosts, ζ, to be proportional

to the within-host density of the transmission stage, P2, ζ[P2(t)] = cP2(t). The total

transmission l(r) of the pathogen with the growth rate r during acute infection of

duration ∆ then is

l(r) =
∫ ∆

0
ζ[P2(t)] dt = c

∫ ∆

0
P2(t) dt. (30)

In Figure 12 we plot the dynamics of the infection and the total transmission l(r)

for pathogens with different growth rates in vaccinated and unvaccinated hosts. As

in the main text we assume that vaccination increases the precursor number of the

corresponding immune response. Importantly, since both responses are present in

unvaccinated and vaccinated hosts, we cannot exclude the competition between the

responses for the pathogen required for the immune responses’ expansion. This in

turn affects the changes in the maximal total transmission occurring with vaccination

(see below).

In this more complex model we find that in unvaccinated hosts the replicating

stage falls short of the lethal density, and the pathogen obtains high total trans-

mission (set to be 100%). In anti-growth vaccinated hosts (X10 = 2, Figure 12B)

replicating stage reaches lower densities leading to lower densities of the transmis-

sion stage, in turn leading to a decreased total transmission (l ≈ 30%). Importantly,

however, the ES pathogen total transmission in vaccinated hosts is higher than the

ES transmission in unvaccinated hosts (Figure 12D). This occurs because while in

both cases pathogen densities are similar, the infection is of a shorter duration in vac-

cinated hosts leading to a lower density for the anti-transmission immune response

X2 which in turn results in lower inhibition of pathogen transmission (Figure 12D).

Similarly to the simple model, analyzed in the main text, the dynamics of the repli-

cation stage do not change after anti-transmission vaccination, but the ES pathogen

transmission is reduced. These results are qualitatively similar to the results of

the simple model (compare Figures 4 and 12) with the exception of an increased

maximal total transmission in anti-growth vaccinated hosts. We thus expect quali-

tatively similar changes in virulence of pathogens evolving in a partially-vaccinated

host population.
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Figure 12: Within-host dynamics of pathogens and the host’s immune responses and
the pathogen’s total transmission in unvaccinated hosts (X10 = X20 = 1, panel A), in
anti-growth vaccinated hosts (X10 = 2, panels B and D) and anti-transmission vaccinated
hosts (X20 = 10, panels C and E). Parameters are P1(0) = 1, P2(0) = 0, k2 = 102, r = 2.1,
λ = 0.01; other parameters are the same as in the main text.
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